- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0010000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Hwang, Geonho (1)
-
Lee, Wonyeol (1)
-
Park, Sejun (1)
-
Park, Yeachan (1)
-
Saad, Feras (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The classical universal approximation (UA) theorem for neural networks establishes mild conditions under which a feedforward neural network can approximate a continuous functionfwith arbitrary accuracy. A recent result shows that neural networks also enjoy a more generalintervaluniversal approximation (IUA) theorem, in the sense that the abstract interpretation semantics of the network using the interval domain can approximate the direct image map off(i.e., the result of applyingfto a set of inputs) with arbitrary accuracy. These theorems, however, rest on the unrealistic assumption that the neural network computes over infinitely precise real numbers, whereas their software implementations in practice compute over finite-precision floating-point numbers. An open question is whether the IUA theorem still holds in the floating-point setting. This paper introduces the first IUA theorem forfloating-pointneural networks that proves their remarkable ability toperfectly capturethe direct image map of any rounded target functionf, showing no limits exist on their expressiveness. Our IUA theorem in the floating-point setting exhibits material differences from the real-valued setting, which reflects the fundamental distinctions between these two computational models. This theorem also implies surprising corollaries, which include (i) the existence ofprovably robustfloating-point neural networks; and (ii) thecomputational completenessof the class of straight-line programs that use only floating-point additions and multiplications for the class of all floating-point programs that halt.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
